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In the framework of Nelson stochastic mechanics the Skyrme SU(2) model is 
quantized. A new term is added to a classical skyrmion mass. It coincides with 
the term obtained by Fujii et al. by modifying the canonical quantization. This 
example illustrates that stochastic mechanics as an alternative method of quanti- 
zation is convenient for theories with collective coordinates and for nonlinear 
theories, as some problems related to operator ordering and modification of 
canonical formalism are naturally solved. 

Fol lowing Fujii et al. (1986, 1987), we start  f rom the Lagrang ian  of  the 
SU(2)- invar ian t  Skyrme model :  

+ 1  f 2  Tr(  ULp, ULp) Tr([  ULp, ULp] 2) 
L(ULp; 2, t ) = ~ -  32e~ 

+ m 2 J ~ T r ( U - 1 )  + h.c. (1) 
4 

Here  ULp = OpUU + and f,~= 93 MeV. Collective coordinates  A(q( t ) ) ,  where 
qa(t) are real pa ramete r s  ( a =  1, 2, 3), are in t roduced in the same manne r  as 
in Adkins  et al. (1983): U=A(t )cr (~)A( t )  +. Existence o f  a soliton solut ion 
with relevant  bounda ry  condit ions (Fujii et al., 1986, 1987) is also assumed:  
o'(Yc) = exp[ iF(r)~] ,  r = [~[, ~ = ~/r,  ~= Pauli matr ix.  

Within the s tandard  approach  (Adkins  et al., 1983), canonical  quantiz-  
a t ion o f  the model  considered is effected once the Lagrangian  has been 
explicitly expressed in terms o f  the classically t reated collective coordinates.  
Unlike this procedure  of  quant izat ion,  Fujii et al. (1986, 1987) p roposed  to 
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treat collective coordinates A( t )  in the Lagrangian (1) from the beginning 
as quantum mechanical operators following a method of quantization of 
nonlinear theories that has been examined by various authors (Lin et al., 
1970; Sugano, 1971 ; Kimura, 1971 ; Kimura and Sugano, 1972). Fujii et al. 
(1986, 1987) found that in doing this a new additional mass term appears. 
This new mass term plays a role in stabilizing the rotating chiral soliton. 

Unlike the standard canonical quantization method, Fujii et al. (1986, 
1987), Lin et al. (1970), Sugano et al. (1971), Kimura (1971), and Kimura 
and Sagano (1972) take as starting point coordinates and velocities as quan- 
tum mechanical operators in the initial Lagrangian (1). Commutators of qa 
and 0 a are chosen so as to keep canonical commutation relations between 
qa and canonical momentum pa. 

The quantum description in Nelson stochastic quantum mechanics 
(Dohrn and Guerra, 1978; Morato, 1982; Nelson, 1966; Blanchard et al., 
1987) (as an alternative formulation of quantum mechanics) is also provided 
within the Lagrangian formalism, without resorting to the Hamiltonian. It 
is interesting to compare the results of the operator approach by Fujii et al. 
(1986, 1987) and the results of stochastic quantum mechanics applied to the 
skyrmion quantization. Besides, it is important that so far the results of 
stochastic mechanics, applied to simple systems, coincided with those of 
canonical quantization. But here we see that to quantize the Skyrme model 
the formalism of stochastic mechanics appears to be more suitable and 
natural. 

In the present paper we study the quantum dynamics of the rotational 
skyrmion within standard stochastic quantum mechanics to show that the 
results of such considerations agree with those of a modified canonical quan- 
tization carried out by Fujii et al. (1986, 1987; also see Lin et al., 1970; 
Sugano, 1971; Kimura, 1971; Kimura and Sugano, 1972). Note that the 
problem of operator ordering, which makes handling these theories difficult 
both for operator quantization and path integration methods, is taken into 
account in the geometric structure of stochastic quantum mechanics itself. 

The dynamics of a rotational skyrmion is analogous to the dynamics 
of a particle in a curved space. In stochastic mechanics dynamical variables 
qa(t) are rendered as random functions of time, satisfying stochastic equa- 
tions describing the Brownian motion of a particle in the curved space with 
diffusion coefficient v= h / 2 m  (h = Planck's constant, m = mass of a particle). 

The classical Lagrangian for the particle in the curved space, having the 
form 

Z =m ~ g ~ ( q ) O ~ O k - ~ q )  (2) 
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is replaced in stochastic mechanics by the Lagrangian (Dohrn and Guerra, 
1978; Morato, 1982; Nelson, 1966; Blanchard et al., 1987) 

L = E[ 2 gik(q)D +qiD_q~ ] -  V(q) (3) 

where time derivatives 0 i are replaced by stochastic time derivatives: 

F i _}_(t At) i q  (t). ] 
D• i= lira E_ q qi(t) - ~  (4) 

At~o 1 At 

Here E [ . . .  ] in (3) denotes averaging over the density of probability p(q, t), 
and E [ . . .  Iq i] in (4) denotes averaging over conditional probabilities. For 
a suitable scalar function F(q, t) one obtains (Dohrn and Guerra, 1978; 
Morato, 1982; Nelson, 1986; Blanchard et al., 1987) 

0F ~.j 
D • t) =~-+b~:  OiF-4- VLBF (5) 

where ALB = (x/g)- 1 0j(,fg gU 0k) is the Laplace-Beltrami operator. 
A replacement similar to that in (4) is made in the Lagrangian (1) to 

yield 

L(UL; 2, t ) = - E  Tr[(D+ U)U +, (D_ g ) g  § ] 

+ 16e  Tr{[(D+ U)U § (0 U)U+I �9 [(O_ U)U § , (0 U)U*I} 

2 
+~Tr(ULr,  ULr)-~I~ Tr([ULr, ULb] 2) (6) 

32e~ 

From equation (5) we have 

D• U-D• +) =(D• + + Ao'(D• +) 

+2 v 0iA (r 0iA + (7) 

(D • U) U + = A [(B• + fiB + cr +) 4- 2 vPi~rPi~ + ]A + 

where 

B•177 OiA+VALBA), P i = - P i + - A  + OiA (8) 
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Taking into account the following relations and definitions introduced 
following Fujii et al. (1986, 1987), 

i 
P , = ~  Cf(q)vs, cb~ (a) - / ~  C/~ 

C ~ C ' ~ = 6 w  B ~ _  k Ci C B -  ~i 

i 
r B -  ~ r ~  + = 2 x ~ , ( ~ )  r ~ ,  ~ c r  + - -  ~ ( ~ z )  r~ 

2 

r . -  o -+ rso-= 2XnD(.~) rD 

a((~)~BE=-, f d x(f rtXBDXED +-f-~ ~Fe~XBDX EGC.FDJ'HGJ) 
J v 4e~ 

gik= a( ~)C~ C~ 

we have 

(9) 

(D • U)U+ = A(ido~XsorD:FVxBArsvA)A + (10) 

By substitution of (10) into the Lagrangian (6), we obtain 

L = f d 3 x L ( U L ;  Yc, t )=E[~ ig (q )~+~-] - (Mc+AMc)  (11) 

where Mc is the standard classical mass of the skyrmion (Fujii et al., 1986, 
1987; Adkins et al., 1983) and AM~ is a new additional mass term: 

8rcv_~_ 2 
AMc = - "dr rZs 2 + 2F '2 + (12) 

a(o-)  2 

with s = sin F(r), F' = dF/dr, v = 1/2. 
The new mass term AMc exactly coincides with that found by Fujii et al. 

(1986, 1987) by an operator quantization method with a modified canonical 
formalism. Fujii et al. (1986, 1987) discussed the role of this term in the 
stabilization of a rotational skyrmion. In a future paper we will examine the 
problem of current conservation in a stochastic mechanical approach to 
skyrmion dynamics. 
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